Switch Analysis for Running Time Analysis of Evolutionary Algorithms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

General Lower Bounds for the Running Time of Evolutionary Algorithms

We present a new method for proving lower bounds in evolutionary computation based on fitness-level arguments and an additional condition on transition probabilities between fitness levels. The method yields exact or near-exact lower bounds for LO, OneMax, and all functions with a unique optimum. All lower bounds hold for every evolutionary algorithm that only uses standard mutation as variatio...

متن کامل

Running Time Analysis of Multi-objective Evolutionary Algorithms on a Simple Discrete Optimization Problem

For the first time, a running time analysis of populationbased multi-objective evolutionary algorithms for a discrete optimization problem is given. To this end, we define a simple pseudo-Boolean bi-objective problem (Lotz: leading ones trailing zeroes) and investigate time required to find the entire set of Pareto-optimal solutions. It is shown that different multi-objective generalizations of...

متن کامل

Running Time Analysis of Evolutionary Algorithms on Vector-Valued Pseudo-Boolean Functions

This paper presents a rigorous running time analysis of evolutionary algorithms on pseudo-Boolean multiobjective optimization problems. We propose and analyze di erent population-based algorithms, the simple evolutionary multiobjective optimizer SEMO and two improved versions, FEMO and GEMO. The analysis is carried out on two bi-objective model problems, LOTZ (Leading Ones Trailing Zeroes) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Evolutionary Computation

سال: 2015

ISSN: 1089-778X,1089-778X,1941-0026

DOI: 10.1109/tevc.2014.2378891